Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 5023, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424101

RESUMO

Understanding temperature-sensitivity of R gene-mediated resistance against apoplastic pathogens is important for sustainable food production in the face of global warming. Here, we show that resistance of Brassica napus cotyledons against Leptosphaeria maculans was temperature-sensitive in introgression line Topas-Rlm7 but temperature-resilient in Topas-Rlm4. A set of 1,646 host genes was differentially expressed in Topas-Rlm4 and Topas-Rlm7 in response to temperature. Amongst these were three WAKL10 genes, including BnaA07g20220D, representing the temperature-sensitive Rlm7-1 allele and Rlm4. Network analysis identified a WAKL10 protein interaction cluster specifically for Topas-Rlm7 at 25 °C. Diffusion analysis of the Topas-Rlm4 network identified WRKY22 as a putative regulatory target of the ESCRT-III complex-associated protein VPS60.1, which belongs to the WAKL10 protein interaction community. Combined enrichment analysis of gene ontology terms considering gene expression and network data linked vesicle-mediated transport to defence. Thus, dysregulation of effector-triggered defence in Topas-Rlm7 disrupts vesicle-associated resistance against the apoplastic pathogen L. maculans.


Assuntos
Brassica napus , Mapas de Interação de Proteínas , Temperatura , Genes vpr , Proteínas/metabolismo , Brassica napus/genética , Brassica napus/metabolismo , Perfilação da Expressão Gênica , Doenças das Plantas/genética
2.
Pest Manag Sci ; 80(5): 2435-2442, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36869585

RESUMO

BACKGROUND: The phoma stem canker pathogen Leptosphaeria maculans is one of the most widespread and devastating pathogens of oilseed rape (Brassica napus) in the world. Pathogen colonization is stopped by an interaction of a pathogen Avr effector gene with the corresponding host resistance (R) gene. While molecular mechanisms of this gene-for-gene interaction are being elucidated, understanding of effector function remains limited. The purpose of this study was to determine the action of L. maculans effector (AvrLm) genes on incompatible interactions triggered by B. napus noncorresponding R (Rlm) genes. Specifically, effects of AvrLm4-7 and AvrLm1 on Rlm7-mediated resistance were studied. RESULTS: Although there was no major effect on symptom expression, induction of defence genes (e.g. PR1) and accumulation of reactive oxygen species was reduced when B. napus cv. Excel carrying Rlm7 was challenged with a L. maculans isolate containing AvrLm1 and a point mutation in AvrLm4-7 (AvrLm1, avrLm4-AvrLm7) compared to an isolate lacking AvrLm1 (avrLm1, AvrLm4-AvrLm7). AvrLm7-containing isolates, isogenic for presence or absence of AvrLm1, elicited similar symptoms on hosts with or without Rlm7, confirming results obtained with more genetically diverse isolates. CONCLUSION: Careful phenotypic examination of isogenic L. maculans isolates and B. napus introgression lines demonstrated a lack of effect of AvrLm1 on Rlm7-mediated resistance despite an apparent alteration of the Rlm7-dependent defence response using more diverse fungal isolates with differences in AvrLm1 and AvrLm4. As deployment of Rlm7 resistance in crop cultivars increases, other effectors need to be monitored because they may alter the predominance of AvrLm7. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ascomicetos , Brassica napus , Ascomicetos/genética , Ascomicetos/metabolismo , Leptosphaeria , Mutação Puntual , Fenótipo , Brassica napus/genética , Doenças das Plantas/microbiologia
3.
Pest Manag Sci ; 80(5): 2443-2452, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37759352

RESUMO

BACKGROUND: Phoma stem canker is an economically important disease of oilseed rape, caused by two co-existing fungal pathogen species, Leptosphaeria maculans (Plenodomus lingam) and Leptosphaeria biglobosa (Plenodomus biglobosus). Leptosphaeria maculans produces a phytotoxin called sirodesmin PL. Our previous work showed that L. biglobosa has an antagonistic effect on the production of sirodesmin PL if it is simultaneously co-inoculated with L. maculans. However, the effects of sequential co-inoculation on interspecific interactions between the two pathogens are not understood. RESULTS: The interactions between L. maculans and L. biglobosa were investigated in liquid culture by inoculation with L. maculans first, followed by L. biglobosa sequentially at 1, 3, 5 or 7 days later and vice versa; the controls were inoculated with L. maculans only, L. biglobosa only, or L. maculans and L. biglobosa simultaneously. The results showed that L. biglobosa inhibited the growth of L. maculans, the production of both sirodesmin PL and its precursors if L. biglobosa was inoculated before, or simultaneously with, L. maculans. However, the antagonistic effects of L. biglobosa were lost if it was co-inoculated 5 or 7 days after L. maculans. CONCLUSION: For the first time, the results of this study provided evidence that the timing when L. maculans and L. biglobosa meet significantly influences the outcome of the interspecific competition between them. Leptosphaeria biglobosa can inhibit the production of sirodesmin PL and the growth of L. maculans if it is inoculated before L. maculans or less than 3 days after L. maculans in liquid culture. There is a need to further investigate the timing of co-inoculation on interactions between L. maculans and L. biglobosa in their host plants for improving the control of phoma stem canker. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Ascomicetos , Brassica napus , Leptosphaeria , Phoma , Doenças das Plantas/microbiologia
4.
Pest Manag Sci ; 80(5): 2453-2460, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37759372

RESUMO

BACKGROUND: Detection of the inoculum of phytopathogens greatly assists in the management of diseases, but is difficult for pathogens with airborne fungal propagules. Here, we present experiments to determine the abundance and distribution frequencies of the ascospores of Leptosphaeria (Plenodomus) species that were collected on the tapes of volumetric Hirst-type traps near oilseed rape fields in Poznan, Poland and Harpenden, UK. Fungal detection and species discrimination were achieved using a SYBR-Green quantitative polymerase chain reaction (qPCR) with two different pairs of primers previously reported to differentiate Leptosphaeria maculans (Plenodomus lingam) or L. biglobosa (P. biglobosus). RESULTS: Detection was successful even at fewer than five spores per m3 of air. The primer pairs differed in the correlation coefficients obtained between DNA yields and the daily abundance of ascospores that were quantified by microscopy on duplicate halves of the spore trap tapes. Important differences in the specificity and sensitivity of the published SYBR-Green assays were also found, indicating that the Liu primers did not detect L. biglobosa subclade 'canadensis', whereas the Mahuku primers detected L. biglobosa subclade 'canadensis' and also the closely related Plenodomus dezfulensis. CONCLUSIONS: Comparisons confirmed that application of qPCR assays to spore trap samples can be used for the early detection, discrimination and quantification of aerially dispersed L. maculans and L. biglobosa propagules before leaf spot symptoms are visible in winter oilseed rape fields. The specificity of the primers must be taken into consideration because the final result will greatly depend on the local population of the pathogen. © 2023 Society of Chemical Industry.


Assuntos
Brassica napus , Leptosphaeria , Phoma , Doenças das Plantas/microbiologia , Esporos Fúngicos
5.
Pest Manag Sci ; 2022 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-36327145

RESUMO

BACKGROUND: Phoma stem canker is caused by two coexisting pathogens, Leptosphaeria maculans and L. biglobosa. They coexist because of their temporal and spatial separations, which are associated with the differences in timing of their ascospore release. L. maculans produces sirodesmin PL, while L. biglobosa does not. However, their interaction/coexistence in terms of secondary metabolite production is not understood. RESULTS: Secondary metabolites were extracted from liquid cultures, L. maculans only (Lm only), L. biglobosa only (Lb only), L. maculans and L. biglobosa simultaneously (Lm&Lb) or sequentially 7 days later (Lm+Lb). Sirodesmin PL or its precursors were identified in extracts from 'Lm only' and 'Lm+Lb', but not from 'Lm&Lb'. Metabolites from 'Lb only', 'Lm&Lb' or 'Lm+Lb' caused significant reductions in L. maculans colony area. However, only the metabolites containing sirodesmin PL caused a significant reduction to L. biglobosa colony area. When oilseed rape cotyledons were inoculated with conidia of 'Lm only', 'Lb only' or 'Lm&Lb', 'Lm only' produced large gray lesions, while 'Lm&Lb' produced small dark lesions similar to lesions caused by 'Lb only'. Sirodesmin PL was found only in the plant extracts from 'Lm only'. These results suggest that L. biglobosa prevents the production of sirodesmin PL and its precursors by L. maculans when they grow simultaneously in vitro or in planta. CONCLUSION: For the first time, L. biglobosa has been shown to inhibit the production of sirodesmin PL by L. maculans when interacting simultaneously with L. maculans either in vitro or in planta. This antagonistic effect of interspecific interaction may affect their coexistence and subsequent disease progression and management. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

6.
Pest Manag Sci ; 2022 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-36209484

RESUMO

BACKGROUND: Light leaf spot, caused by Pyrenopeziza brassicae, is amongst the most damaging diseases of winter oilseed rape (Brassica napus), and currently the sterol 14α-demethylase (CYP51) inhibitors (azoles) represent the main class of fungicides used to control light leaf spot development. However, a shift in sensitivity to azole fungicides in P. brassicae populations has been observed in different European countries, including Ireland. RESULTS: To assess the sensitivity status of Irish P. brassicae populations to azole fungicides, three collections of P. brassicae from 2018-2020 were tested in vitro against tebuconazole and prothioconazole-desthio, and the PbCYP51 gene targeted by this class of fungicides was genotyped in different isolates. A change in sensitivity to azole fungicides was observed and differences in sensitivity to tebuconazole between Irish populations were present. There were two substitutions within PbCYP51 (G460S and S508T) and inserts of different sizes in its promoter region. The presence of the G460S/S508T double mutant was reported for the first time, and the diversity in insert size was greater than previously known. Compared to wild type isolates, those carrying G460S or S508T were less sensitive to both fungicides and, where inserts were also identified, they further reduced sensitivity to azole fungicides. CONCLUSIONS: The results of this study suggest that azole fungicides are still very effective in controlling light leaf spot in Ireland. However, using azole fungicides in mixtures of fungicides with different modes of action is recommended. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

7.
Pest Manag Sci ; 2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36285624

RESUMO

BACKGROUND: Phoma stem canker is a damaging disease of oilseed rape caused by two related fungal species, Leptosphaeria maculans and L. biglobosa. However, previous work has mainly focused on L. maculans and there has been little work on L. biglobosa. This work provides evidence of the importance of L. biglobosa to stem canker epidemics in the UK. RESULTS: Quantification of L. maculans and L. biglobosa DNA using species-specific quantitative PCR showed that L. biglobosa caused both upper stem lesions and stem base cankers on nine oilseed rape cultivars in the UK. Upper stem lesions were mainly caused by L. biglobosa. For stem base cankers, there was more L. maculans DNA than L. biglobosa DNA in the susceptible cultivar Drakkar, while there was more L. biglobosa DNA than L. maculans DNA in cultivars with the resistance gene Rlm7 against L. maculans. The frequency of L. biglobosa detected in stem base cankers increased from 14% in 2000 to 95% in 2013. Ascospores of L. biglobosa and L. maculans were mostly released on the same days and the number of L. biglobosa ascospores in air samples increased from the 2010/2011 to 2012/2013 growing seasons. CONCLUSION: Effective control of L. maculans increased infection by L. biglobosa, causing severe upper stem lesions and stem base cankers, leading to yield losses. The importance of L. biglobosa to phoma stem canker epidemics can no longer be ignored. Effective control of phoma stem canker epidemics needs to target both L. maculans and L. biglobosa. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

8.
Front Plant Sci ; 13: 785804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310658

RESUMO

Cultivar resistance is an important tool in controlling pathogen-related diseases in agricultural crops. As temperatures increase due to global warming, temperature-resilient disease resistance will play an important role in crop protection. However, the mechanisms behind the temperature-sensitivity of the disease resistance response are poorly understood in crop species and little is known about the effect of elevated temperatures on quantitative disease resistance. Here, we investigated the effect of temperature increase on the quantitative resistance of Brassica napus against Leptosphaeria maculans. Field experiments and controlled environment inoculation assays were done to determine the influence of temperature on R gene-mediated and quantitative resistance against L. maculans; of specific interest was the impact of high summer temperatures on the severity of phoma stem canker. Field experiments were run for three consecutive growing seasons at various sites in England and France using twelve winter oilseed rape breeding lines or cultivars with or without R genes and/or quantitative resistance. Stem inoculation assays were done under controlled environment conditions with four cultivars/breeding lines, using avirulent and virulent L. maculans isolates, to determine if an increase in ambient temperature reduces the efficacy of the resistance. High maximum June temperature was found to be related to phoma stem canker severity. No temperature effect on stem canker severity was found for the cultivar ES Astrid (with only quantitative resistance with no known R genes). However, in the controlled environmental conditions, the cultivar ES Astrid had significantly smaller amounts of necrotic tissue at 20°C than at 25°C. This suggests that, under a sustained temperature of 25°C, the efficacy of quantitative resistance is reduced. Findings from this study show that temperature-resilient quantitative resistance is currently available in some oilseed cultivars and that efficacy of quantitative resistance is maintained at increased temperature but not when these elevated temperatures are sustained for a long period.

9.
Front Plant Sci ; 13: 786189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185976

RESUMO

Use of host resistance is the most economical and environmentally safe way to control light leaf spot disease of oilseed rape (Brassica napus). The causal organism of light leaf spot, Pyrenopeziza brassicae, is one of the most economically damaging pathogens of oilseed rape in the United Kingdom and it is considered to have a high potential to evolve due to its mixed reproduction system and airborne ascospores. This necessitates diverse sources of host resistance, which are inadequate at present to minimize yield losses caused by this disease. To address this, we screened a doubled haploid (DH) population of oilseed rape, derived from a secondary gene pool (ancestral genomes) of B. napus for the introgression of resistance against P. brassicae. DH lines were phenotyped using controlled-environment and glasshouse experiments with P. brassicae populations obtained from three different geographic locations in the United Kingdom. Selected DH lines with different levels of resistance were further studied in a controlled-environment experiment using both visual (scanning electron microscope - SEM) and molecular (quantitative PCR) assessment methods to understand the mode/s of host resistance. There was a clear phenotypic variation for resistance against P. brassicae in this DH population. Quantitative trait locus (QTL) analysis identified four QTLs with moderate to large effects, which were located on linkage groups C1, C6, and C9. Of these, the QTL on the linkage group C1 appeared to have a major effect on limiting P. brassicae asexual sporulation. Study of the sub-cuticular growth phase of P. brassicae using qPCR and SEM showed that the pathogen was able to infect and colonise both resistant and susceptible Q DH lines and control B. napus cultivars. However, the rate of increase of pathogen biomass was significantly smaller in resistant lines, suggesting that the resistance segregating in this DH population limits colonisation/sporulation by the pathogen rather than eliminating the pathogen. Resistance QTLs identified in this study provide a useful resource for breeding cultivar resistance for effective control of light leaf spot and form a starting point for functional identification of the genes controlling resistance against P. brassicae that can contribute to our knowledge on mechanisms of partial resistance of crops against pathogens.

10.
Plant Dis ; 105(10): 3192-3200, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33560882

RESUMO

Blackleg of oilseed rape is a damaging invasive disease caused by the species complex Leptosphaeria maculans (Lm)/L. biglobosa (Lb), which is composed of at least two and seven phylogenetic subclades, respectively. Generally, Lm is more virulent than Lb, but under certain conditions, Lb can cause a significant yield loss in oilseed rape. Lb 'brassicae' (Lbb) has been found to be the causal agent for blackleg of oilseed rape in China, whereas Lm and Lb 'canadensis' (Lbc) were frequently detected in imported seeds of oilseed rape, posing a risk of spread into China. To monitor the blackleg-pathogen populations, a diagnostic tool based on loop-mediated isothermal amplification (LAMP) was developed using a 615-bp-long DNA sequence from Lbb that was derived from a randomly amplified polymorphic DNA assay. The LAMP was optimized for temperature and time, and tested for specificity and sensitivity using the DNA extracted from Lbb, Lbc, Lm, and 10 other fungi. The results showed that the optimal temperature and time were 65°C and 40 min, respectively. The LAMP primer set was specific to Lbb and highly sensitive as it detected the Lbb DNA as low as 132 fg per reaction. The LAMP assay was validated using the DNA extracted from mycelia and conidia of a well-characterized Lbb isolate, and its utility was evaluated using the DNA extracted from leaves, stems, pods, and seeds of oilseed rape. The LAMP assay developed herein will help for monitoring populations of the blackleg pathogens in China and in developing strategies for management of the blackleg disease.


Assuntos
Ascomicetos , Ascomicetos/genética , Leptosphaeria , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Filogenia , Doenças das Plantas
11.
PLoS One ; 14(9): e0222540, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31513677

RESUMO

Key message: One QTL for resistance against Leptosphaeria maculans growth in leaves of young plants in controlled environments overlapped with one QTL detected in adult plants in field experiments. The fungal pathogen Leptosphaeria maculans initially infects leaves of oilseed rape (Brassica napus) in autumn in Europe and then grows systemically from leaf lesions along the leaf petiole to the stem, where it causes damaging phoma stem canker (blackleg) in summer before harvest. Due to the difficulties of investigating resistance to L. maculans growth in leaves and petioles under field conditions, identification of quantitative resistance typically relies on end of season stem canker assessment on adult plants. To investigate whether quantitative resistance can be detected in young plants, we first selected nine representative DH (doubled haploid) lines from an oilseed rape DY ('Darmor-bzh' × 'Yudal') mapping population segregating for quantitative resistance against L. maculans for controlled environment experiment (CE). We observed a significant correlation between distance grown by L. maculans along the leaf petiole towards the stem (r = 0.91) in CE experiments and the severity of phoma stem canker in field experiments. To further investigate quantitative trait loci (QTL) related to resistance against growth of L. maculans in leaves of young plants in CE experiments, we selected 190 DH lines and compared the QTL detected in CE experiments with QTL related to stem canker severity in stems of adult plants in field experiments. Five QTL for resistance to L. maculans growth along the leaf petiole were detected; collectively they explained 35% of the variance. Two of these were also detected in leaf lesion area assessments and each explained 10-12% of the variance. One QTL on A02 co-localized with a QTL detected in stems of adult plants in field experiments. This suggests that resistance to the growth of L. maculans from leaves along the petioles towards the stems contributes to the quantitative resistance assessed in stems of adult plants in field experiments at the end of the growing season.


Assuntos
Ascomicetos/genética , Brassica napus/genética , Resistência à Doença/genética , Brassica napus/metabolismo , Brassica napus/microbiologia , Europa (Continente) , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Locos de Características Quantitativas/genética
12.
PLoS One ; 13(5): e0197752, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29791484

RESUMO

Using cultivar resistance against pathogens is one of the most economical and environmentally friendly methods for control of crop diseases. However, cultivar resistance can be easily rendered ineffective due to changes in pathogen populations or environments. To test the hypothesis that combining R gene-mediated resistance and quantitative resistance (QR) in one cultivar can provide more effective resistance than use of either type of resistance on its own, effectiveness of resistance in eight oilseed rape (Brassica napus) cultivars with different R genes and/or QR against Leptosphaeria maculans (phoma stem canker) was investigated in 13 different environments/sites over three growing seasons (2010/2011, 2011/2012 and 2012/2013). Cultivar Drakkar with no R genes and no QR was used as susceptible control and for sampling L. maculans populations. Isolates of L. maculans were obtained from the 13 sites in 2010/2011 to assess frequencies of avirulent alleles of different effector genes (AvrLm1, AvrLm4 or AvrLm7) corresponding to the resistance genes (Rlm1, Rlm4 or Rlm7) used in the field experiments. Results of field experiments showed that cultivars DK Cabernet (Rlm1 + QR) and Adriana (Rlm4 + QR) had significantly less severe phoma stem canker than cultivars Capitol (Rlm1) and Bilbao (Rlm4), respectively. Results of controlled environment experiments confirmed the presence of Rlm genes and/or QR in these four cultivars. Analysis of L. maculans populations from different sites showed that the mean frequencies of AvrLm1 (10%) and AvrLm4 (41%) were less than that of AvrLm7 (100%), suggesting that Rlm1 and Rlm4 gene-mediated resistances were partially rendered ineffective while Rlm7 resistance was still effective. Cultivar Excel (Rlm7 + QR) had less severe canker than cultivar Roxet (Rlm7), but the difference between them was not significant due to influence of the effective resistance gene Rlm7. For the two cultivars with only QR, Es-Astrid (QR) had less severe stem canker than NK Grandia (QR). Analysis of the relationship between severity of stem canker and weather data among the 13 sites in the three growing seasons showed that increased severity of stem canker was associated with increased rainfall during the phoma leaf spot development stage and increased temperature during the stem canker development stage. Further analysis of cultivar response to environmental factors showed that cultivars with both an Rlm gene and QR (e.g. DK Cabernet, Adriana and Excel) were less sensitive to a change in environment than cultivars with only Rlm genes (e.g. Capitol, Bilbao) or only QR (e.g. DK Grandia). These results suggest that combining R gene and QR can provide effective, stable control of phoma stem canker in different environments.


Assuntos
Ascomicetos/fisiologia , Brassica napus/microbiologia , Resistência à Doença/genética , Alelos , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Genes de Plantas , Doenças das Plantas/microbiologia , Chuva , Estações do Ano , Temperatura , Virulência/genética
13.
Theor Appl Genet ; 131(2): 497, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29189874

RESUMO

The article "Incorporating pleiotropic quantitative trait loci in dissection of complex traits: seed yield in rapeseed as an example", written by J. Zou et al, was originally published Online First without open access.

14.
Sci Rep ; 7(1): 15849, 2017 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-29158527

RESUMO

Lanosterol 14-α demethylase is a key enzyme intermediating the biosynthesis of ergosterol in fungi, and the target of azole fungicides. Studies have suggested that Leptosphaeria maculans and L. biglobosa, the causal agents of phoma stem canker on oilseed rape, differ in their sensitivity to some azoles, which could be driving pathogen frequency change in crops. Here we used CYP51 protein modelling and heterologous expression to determine whether there are interspecific differences at the target-site level. Moreover, we provide an example of intrinsic sensitivity differences exhibited by both Leptosphaeria spp. in vitro and in planta. Comparison of homologous protein models identified highly conserved residues, particularly at the azole binding site, and heterologous expression of LmCYP51B and LbCYP51B, with fungicide sensitivity testing of the transformants, suggests that both proteins are similarly sensitive to azole fungicides flusilazole, prothioconazole-desthio and tebuconazole. Fungicide sensitivity testing on isolates shows that they sometimes have a minor difference in sensitivity in vitro and in planta. These results suggest that azole fungicides remain a useful component of integrated phoma stem canker control in the UK due to their effectiveness on both Leptosphaeria spp. Other factors, such as varietal resistance or climate, may be driving observed frequency changes between species.


Assuntos
Ascomicetos/genética , Azóis/química , Brassica/genética , Sistema Enzimático do Citocromo P-450/genética , Ascomicetos/efeitos dos fármacos , Ascomicetos/patogenicidade , Azóis/farmacologia , Sítios de Ligação , Brassica/química , Brassica/microbiologia , Farmacorresistência Fúngica/genética , Ergosterol/biossíntese , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Silanos/química , Silanos/farmacologia , Esterol 14-Desmetilase/genética , Triazóis/química , Triazóis/farmacologia
15.
Theor Appl Genet ; 130(8): 1569-1585, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28455767

RESUMO

KEY MESSAGE: A comprehensive linkage atlas for seed yield in rapeseed. Most agronomic traits of interest for crop improvement (including seed yield) are highly complex quantitative traits controlled by numerous genetic loci, which brings challenges for comprehensively capturing associated markers/genes. We propose that multiple trait interactions underlie complex traits such as seed yield, and that considering these component traits and their interactions can dissect individual quantitative trait loci (QTL) effects more effectively and improve yield predictions. Using a segregating rapeseed (Brassica napus) population, we analyzed a large set of trait data generated in 19 independent experiments to investigate correlations between seed yield and other complex traits, and further identified QTL in this population with a SNP-based genetic bin map. A total of 1904 consensus QTL accounting for 22 traits, including 80 QTL directly affecting seed yield, were anchored to the B. napus reference sequence. Through trait association analysis and QTL meta-analysis, we identified a total of 525 indivisible QTL that either directly or indirectly contributed to seed yield, of which 295 QTL were detected across multiple environments. A majority (81.5%) of the 525 QTL were pleiotropic. By considering associations between traits, we identified 25 yield-related QTL previously ignored due to contrasting genetic effects, as well as 31 QTL with minor complementary effects. Implementation of the 525 QTL in genomic prediction models improved seed yield prediction accuracy. Dissecting the genetic and phenotypic interrelationships underlying complex quantitative traits using this method will provide valuable insights for genomics-based crop improvement.


Assuntos
Brassica napus/genética , Locos de Características Quantitativas , Sementes/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Mapeamento Cromossômico , Ligação Genética , Marcadores Genéticos , Fenótipo , Polimorfismo de Nucleotídeo Único
16.
PLoS One ; 9(1): e84924, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24454767

RESUMO

Quantitative resistance against Leptosphaeria maculans in Brassica napus is difficult to assess in young plants due to the long period of symptomless growth of the pathogen from the appearance of leaf lesions to the appearance of canker symptoms on the stem. By using doubled haploid (DH) lines A30 (susceptible) and C119 (with quantitative resistance), quantitative resistance against L. maculans was assessed in young plants in controlled environments at two stages: stage 1, growth of the pathogen along leaf veins/petioles towards the stem by leaf lamina inoculation; stage 2, growth in stem tissues to produce stem canker symptoms by leaf petiole inoculation. Two types of inoculum (ascospores; conidia) and three assessment methods (extent of visible necrosis; symptomless pathogen growth visualised using the GFP reporter gene; amount of pathogen DNA quantified by PCR) were used. In stage 1 assessments, significant differences were observed between lines A30 and C119 in area of leaf lesions, distance grown along veins/petioles assessed by visible necrosis or by viewing GFP and amount of L. maculans DNA in leaf petioles. In stage 2 assessments, significant differences were observed between lines A30 and C119 in severity of stem canker and amount of L. maculans DNA in stem tissues. GFP-labelled L. maculans spread more quickly from the stem cortex to the stem pith in A30 than in C119. Stem canker symptoms were produced more rapidly by using ascospore inoculum than by using conidial inoculum. These results suggest that quantitative resistance against L. maculans in B. napus can be assessed in young plants in controlled conditions. Development of methods to phenotype quantitative resistance against plant pathogens in young plants in controlled environments will help identification of stable quantitative resistance for control of crop diseases.


Assuntos
Ascomicetos/patogenicidade , Brassica napus/microbiologia , Ascomicetos/genética , DNA Fúngico/genética , Estruturas Vegetais/microbiologia , Reação em Cadeia da Polimerase
17.
Annu Rev Phytopathol ; 44: 163-82, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16602949

RESUMO

This review considers factors affecting the coexistence of closely related pathogen species on arable crops, with particular reference to data available at Rothamsted for Septoria tritici/Stagonospora nodorum (Mycosphaerella graminicola/Phaeosphaeria nodorum) (septoria leaf blotch diseases on winter wheat), Oculimacula yallundae/O. acuformis (eyespot disease of winter cereals), and Leptosphaeria maculans/L. biglobosa (phoma stem canker on winter oilseed rape). Factors affecting the short-term, medium-term, and long-term coexistence of such related pathogen species are reviewed, and their evolution from common ancestors considered. Small niche differences between the related pathogen species enable them to coexist on the same host. The niche differences result from small differences in their biology/epidemiology, leading to separation in space, time, or resource use. Changes in both natural (e.g., fluctuating temperature) and man-made (e.g., agronomic practices, pollution) factors influence the coexistence. Such factors may result in coexistence between the related species in some parts of the world, whereas in other parts only one species occurs. These principles illustrated with pathogens of arable crops are generic to other host-pathogen systems.


Assuntos
Produtos Agrícolas/microbiologia , Doenças das Plantas/microbiologia , Evolução Biológica , Produtos Agrícolas/genética , Doenças das Plantas/genética , Fatores de Tempo
18.
New Phytol ; 170(1): 129-41, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16539610

RESUMO

Near-isogenic Brassica napus lines carrying/lacking resistance gene Rlm6 were used to investigate the effects of temperature and leaf wetness duration on phenotypic expression of Rlm6-mediated resistance. Leaves were inoculated with ascospores or conidia of Leptosphaeria maculans carrying the effector gene AvrLm6. Incubation period to the onset of lesion development, number of lesions and lesion diameter were assessed. Symptomless growth of L. maculans from leaf lesions to stems was investigated using a green fluorescent protein (GFP) expressing isolate carrying AvrLm6. L. maculans produced large grey lesions on Darmor (lacking Rlm6) at 5-25 degrees C and DarmorMX (carrying Rlm6) at 25 degrees C, but small dark spots and 'green islands' on DarmorMX at 5-20 degrees C. With increasing temperature/wetness duration, numbers of lesions/spots generally increased. GFP-expressing L. maculans grew from leaf lesions down leaf petioles to stems on DarmorMX at 25 degrees C but not at 15 degrees C. We conclude that temperature and leaf wetness duration affect the phenotypic expression of Rlm6-mediated resistance in leaves and subsequent L. maculans spread down petioles to produce stem cankers.


Assuntos
Ascomicetos , Brassica napus/genética , Brassica napus/microbiologia , Doenças das Plantas/microbiologia , Temperatura , Ascomicetos/crescimento & desenvolvimento , Brassica napus/anatomia & histologia , Cruzamentos Genéticos , Genes de Plantas , Imunidade Inata/genética , Modelos Biológicos , Fenótipo , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Caules de Planta/anatomia & histologia , Caules de Planta/genética , Caules de Planta/microbiologia , Fatores de Tempo , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...